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Lattice QCD (LQCD) Software

® Our main software latscat was 1nitially developed by Thorsten Kurth (now @
NERSC). Evan Berkowitz, Enrico Rinaldi and AWL are now co-developers
with Thorsten consulting regularly

® We work closely with Kate Clark (NVIDIA) who develops QUDA (GPU
library) and continues to optimize software for our projects (Titan/OLCF)

® We work closely with Balint Joo (principal developer of USQCD libraries)
who continues to optimize and add support for routines we use

® We work closely with Abhinav Sarje (LBL CRD through CalLat SciDAC3)
and Ken McElvain (20+ yr software engineer turned UC Berkeley physics
grad student) on significant performance optimizations, O(50-100%)

® We have implemented a NERSC database to share numerical results amongst
ourselves and ultimately, to share our raw LQCD results and our analysis
results (the physics) publicly with easy open access to interested physicists

® We are seeking funding for partial support of LBL Computer Scientist/Applied
Math scientists who are familiar with exascale development and LQCD to
develop next-generation LQCD code for NP on (near-)exascale computers



Hadronic Parity Violation (HPV)
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Hadronic Parity Violation

We éeded t deVelo hévwhtéchnolog‘y ‘to crﬁpute hg»héfp‘artial ave NN.sc‘:a‘tte‘riﬁ‘g phaéé -s‘hifts N
(S,P,D.F), displaced two-nucleon interpolating fields N?(to, XO) er(t(),X()

First LQCD calculation of NN P, D (,F) waves
arXiv:1508.00886 (m, ~ 800 MeV)

Example: 3P, - elastic wave

Lattice QCD calculation of NN energy levels
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Hadronic Parity Violation (HPV)

‘bare Iattlce matrlx element
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Most significant systematic/challenge for HPV 1s
our determination of good 2-nucleon operators.



F'urther Improved NN Operators

. We have developed new operators Wthh may allow for exponentlally improved results a

NN :38,: T
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t
= our old determination of the ground state (gs) energy with OLD operators

t = deviation from gs plateau 1s driven by excited state contamination

NEW: non-local = our new strategy - the excited state contamination of the two-nucleon correlation
function has been significantly reduced. This will allow analysis beginning earlier
in time where the stochastic noise is ~ exponentially smaller

OLD: non-local = our recently developed displaced two-nucleon interpolating fields
(see previous slides) NT(to, xo) N(to,Xo+r0) |0>

OLD: local = two-nucleon interpolating operators from the same space-time location -
the strategy used by most other groups,  NT(to, X0) N7(to,Xx0) |0> 7






long-range contribution short-range contribution
(standard picture) possibly equally/more important
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Long Range: lattice QCD can help understand “quenching” of ga 4 U
in a nucleus
Short Range: lattice QCD 1s the ONLY theoretical tool we have B
to understand these contributions with quantified uncertainties €
o

Lattice QCD: compute 2-nucleon matrix elements to determine
unknown couplings/transition rates

Many Body Nuclear Effective Theory: take lattice QCD results
as input and compute transition rate in nucleus (Haxton, others) d 1

In this review, focus on short-range contributions



Short-range contribution: probe for heavy physics




oi+

We have performed the first, AND COMPLETE lattice QCD calculation of
the 7~ — 7 transition amplitude which 1s expected to dominate the Ovpf3

rate 1n the case of short distance physics T ot
® physical pion mass L l o
@ continuum and infinite volume limits
@ still need renormalization (doing now)
® expected publication within 2 months
@ result given to many-body nuclear theory to compute rate
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Neutrioless Double Beta-Decay

Short-distance Contact operators

* LO almost complete! *nn — pp contact operators
* dominant contribution to next step: similar to two-N
OvBp from short-range hadronic parity violation
contributions

e need renormalization

Stay Tuned!

Vnn—>pp (Q1 9 Q2)
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Nucleon Matrix Elements & Fundamental Symmetries
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N ucleon Matrlx Elements & I undamental Symmetrles

® LOW energy precision tests of the Standard Model place competltlve bounds
on physics beyond the Standard Model (BSM) as compared to the LHC.

@ Interpreting null results/hopeful signals in terms of potential BSM physics
requires a quantitative and often precise knowledge of one- and sometimes
two-nucleon matrix elements

@ direct dark matter detection
@ permanent electric dipole moments in nucleons and nucle1

@ modification from V-A weak beta decay, n — p+ e + 1,

® M — € conversion

® ...

@ The largest uncertainty in many examples comes from the hadronic
uncertainty of the nucleon matrix elements

@ Lattice QCD calculations of nucleon matrix elements have one additional
systematic that 1s more complicated than regular spectrum calculations:
excited state systematics



Nucleon Matrix Elements & Fundamental Symmetries

@ With C. Bouchard, K. Orginos, we have developed a new method for computing matrix elements

@ significantly improved control over excited states systematics, based upon the Feynman-
Hellman Theorem, in which all excited states contributions are time-dependent (controlled in
fit to numerical results)

® ~9 times more statistical results for approximately equal computing time

@ entire calculation 1s equivalent in cost to 1 single tsep calculation of the standard approach

standard OLD method NEW Feynman-Hellman method
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See poster by Chia Cheng (Jason) Chang 15



Nucleon Matrix Elements & Fundamental Smmties ‘

Embargoed Result
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Lattice QCD for Nuclearszcs -

1. Lattlce QCD 1nfrastructure people and software

a)
b)

we have a very active and tight-knit/engaged team of physicists and computer scientists
we are developing independent software for our specialized needs

2. Hadronic Parity Violation (PV): I=2 NN PV Amplitude

a)
b)

PV calculation on pause as we need to improve two-nucleon elastic scattering
calculations

we have developed an exciting new method that may provide exponential improvement
in NN LQCD calculations - publication coming soon

3. Neutrinoless Double Beta-Decay (0vpp)

a)
b)
c)
d)

OvB may receive important contributions from short-range 4-quark—2-electron
operators (more general BSM theory causing Lepton-number violation)

The term expected to dominate such a contribution comes from a short-range Isospin=2
pion matrix element ™ — T

We have nearly completed the calculation of this matrix element with LQCD - all that
remains 1s the non-perturbative renormalization which we are performing now

next 1s the calculation of two-nucleon operators - same technology as HPV

4. Nucleon Matrix Elements for Fundamental Symmetry Tests

a)

developed new method for computing matrix elements motivated by the Feynman-
Hellman Theorem

b) applied this new method to calculate the nucleon axial charge
ﬂ 17



